Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled variations varying from 1.5 to 70 billion specifications to build, experiment, and properly scale your generative AI concepts on AWS.
In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that uses reinforcement finding out to boost reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial identifying feature is its reinforcement knowing (RL) action, which was utilized to refine the model's responses beyond the standard pre-training and fine-tuning process. By integrating RL, DeepSeek-R1 can adapt more efficiently to user feedback and goals, ultimately enhancing both importance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) method, indicating it's equipped to break down intricate questions and reason through them in a detailed manner. This guided reasoning procedure permits the model to produce more accurate, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT capabilities, aiming to produce structured reactions while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has captured the market's attention as a versatile text-generation design that can be incorporated into various workflows such as representatives, logical reasoning and information analysis jobs.
DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion specifications, making it possible for effective inference by routing questions to the most appropriate professional "clusters." This method allows the model to specialize in various issue domains while maintaining total performance. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 design to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective designs to simulate the habits and thinking patterns of the larger DeepSeek-R1 design, utilizing it as a teacher design.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this model with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid hazardous content, and evaluate models against crucial safety criteria. At the time of writing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop multiple guardrails tailored to various use cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limit increase, create a limit increase demand and connect to your account group.
Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For guidelines, see Set up approvals to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to present safeguards, avoid harmful content, and examine models against key security criteria. You can implement precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to examine user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The general flow involves the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After receiving the design's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections show reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, choose Model catalog under Foundation models in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and pick the DeepSeek-R1 design.
The design detail page provides vital details about the model's abilities, rates structure, and application guidelines. You can discover detailed usage guidelines, consisting of sample API calls and code snippets for integration. The model supports various text generation tasks, including material production, code generation, and concern answering, using its support finding out optimization and CoT reasoning abilities.
The page also consists of implementation alternatives and licensing details to assist you begin with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, select Deploy.
You will be triggered to set up the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters).
5. For oeclub.org Number of instances, enter a number of circumstances (between 1-100).
6. For Instance type, select your circumstances type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested.
Optionally, you can configure sophisticated security and infrastructure settings, including virtual private cloud (VPC) networking, service role consents, and file encryption settings. For the majority of use cases, the default settings will work well. However, for production implementations, you may wish to review these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to start using the design.
When the implementation is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock play ground.
8. Choose Open in playground to access an interactive user interface where you can experiment with different triggers and change design criteria like temperature and maximum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal outcomes. For example, material for reasoning.
This is an outstanding method to check out the design's thinking and text generation capabilities before integrating it into your applications. The playground supplies immediate feedback, assisting you understand how the design reacts to various inputs and letting you tweak your prompts for ideal outcomes.
You can rapidly evaluate the model in the play ground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to perform reasoning utilizing a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have created the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up inference specifications, and sends a demand to produce text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML solutions that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart offers 2 convenient techniques: using the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both approaches to help you select the technique that finest suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be triggered to produce a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The model browser displays available models, with details like the service provider name and design capabilities.
4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each model card shows key details, consisting of:
- Model name
- Provider name
- Task classification (for instance, Text Generation).
Bedrock Ready badge (if appropriate), indicating that this model can be registered with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the model
5. Choose the design card to view the design details page.
The model details page includes the following details:
- The model name and service provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details
The About tab includes crucial details, such as:
- Model description. - License details.
- Technical specifications.
- Usage standards
Before you deploy the model, it's recommended to examine the model details and license terms to validate compatibility with your use case.
6. Choose Deploy to proceed with implementation.
7. For Endpoint name, use the instantly created name or create a custom-made one.
- For Instance type ¸ select an instance type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, get in the variety of circumstances (default: 1). Selecting proper circumstances types and counts is vital for cost and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is optimized for sustained traffic and low latency.
- Review all setups for accuracy. For this design, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to deploy the model.
The release procedure can take numerous minutes to finish.
When implementation is complete, your endpoint status will alter to InService. At this point, the model is all set to accept inference requests through the endpoint. You can keep an eye on the deployment progress on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the release is complete, you can invoke the model using a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the needed AWS approvals and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for inference programmatically. The code for releasing the model is offered in the Github here. You can clone the notebook and range from SageMaker Studio.
You can run extra requests against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as shown in the following code:
Clean up
To prevent unwanted charges, finish the actions in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you released the model using Amazon Bedrock Marketplace, complete the following steps:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations. - In the Managed implementations section, locate the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're erasing the proper implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies build ingenious solutions using AWS services and accelerated compute. Currently, he is concentrated on developing strategies for fine-tuning and enhancing the inference efficiency of large language models. In his leisure time, Vivek takes pleasure in treking, watching films, and attempting various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing solutions that help consumers accelerate their AI journey and value.